This brief summarizes the ways that schools and their teachers can simultaneously reach more students with excellent teaching, expand teachers’ career opportunities, and sustainably fund higher pay and other priorities.

This is based on Public Impact’s school models that use job redesign and technology to extend the reach of excellent teachers and the teams they lead to more students, for more pay, within budget—making significant pay increases possible for all teachers. Most of these models create new roles and collaborative teaching teams, with in-school time for on-the-job learning, enabling all teachers and staff to develop and contribute to excellence.

Savings and cost calculations of three school models—Multi-Classroom Leadership; Elementary Subject Specialization; and Time-Technology Swap Rotation at the elementary and secondary levels, alone and combined with Multi-Classroom Leadership—illustrate that schools could increase excellent teachers’ pay up to approximately 130%, without increasing class sizes and within existing budgets. In some variations, schools may pay all teachers more, sustainably. Combining models to extend the reach of excellent teachers and promote excellence by all instructional staff may produce even greater savings for higher pay and other priorities, while also producing excellent results for more students. For example, adding Multi-Classroom Leadership to any other model lets great teachers take full responsibility for leading and developing their teammates to serve far more students with excellence. Everyone can learn more, and earn more.

We call this an “Opportunity Culture.” In an Opportunity Culture, all teachers have career opportunities dependent upon their excellence, leadership, and student impact. Advancement allows more pay and greater reach. Development toward excellence is possible for all staff, in every role.

When teachers reach more students, additional per-pupil funds become available to support those teachers’ work. This additional funding, minus new costs, can be used for higher pay and other priorities, according to the values, needs, and priorities of each school.

In this brief, we summarize:

- School models for extending the reach of excellent teachers (see the Appendix on page 9 for more)
- How reach models can generate savings that schools can use for higher pay and other priorities
- How schools can use savings, including paying all teachers more
- A comparison of savings and cost factors, and of pay increase potential, when using different reach models

For more information, see OpportunityCulture.org, which provides school model summaries, detailed models and tools, teacher career paths, and more. Detailed models include pay changes and cost savings sections specific to each model. Visit often for updated materials.

School Models for Extending the Reach of Excellent Teachers

Excellent teachers can extend their reach by specializing in their best subjects and difficult teaching roles, swapping time for technology using digital instruction so that teachers can teach more students, leading other teachers and co-teaching with them, or by teaching larger classes (within reason, by choice).

Most excellent teachers are present in schools, of course, teaching face to face and/or leading other teachers. When the shortage of teachers is extreme (overall or in certain subjects), great teachers can be remotely located, with help from on-site paraprofessionals who nurture the whole child. Remotely located teachers use tools such as webcams, online whiteboards, and email to teach and connect personally with students.

Combining models, such as Time-Technology Swaps and Multi-Classroom Leadership, can help great teachers make the best use of time and talent—expanding their impact on students and peers, while saving time for planning, collaboration, and development. Different models will be right for different schools and teachers, and no one model will fit all. See the Appendix on page 9 for a hyperlinked table of reach models.

Extending the reach of excellence requires excellent results. Schools should use each tactic only to the extent that teachers reach more students without lowering student outcomes below the excellence bar. Most options shown here significantly increase in-school planning and collaboration time, which can be scheduled for subject team collaboration and learning. School leaders who choose models wisely—to reach students with teachers who are
School Model Snapshots

MULTI-CLASSROOM LEADERSHIP
Teachers with leadership skills both teach and lead teams or “pods” of other teachers in order to share strategies and best practices for classroom success. Responsible for achieving high growth for all classrooms in the pod, the teacher-leader determines how students spend time and tailors teachers’ roles according to their strengths.

REMOTE TEACHING
Schools without enough excellent teachers can enlist accountable remote teachers down the street or across the nation. Remote teachers use technology to provide live, but not in-person, instruction, while on-site teammates manage administrative duties and develop the whole child.

TIME-TECHNOLOGY SWAPS
Students spend part of the day engaged in self-paced digital learning. Digital instruction replaces enough of top teachers’ time that they can teach more students, using face-to-face teaching time for higher-order learning and personalized follow-up. Teachers can use part of their freed time for planning and collaboration.

ELEMENTARY SPECIALIZATION
A school’s best teachers teach only their best subject(s)—such as math/science or language arts/social studies—while teammates take care of students the rest of the time and cover administrative work. This allows specialized teachers to instruct multiple classrooms of students and gain more time for planning and collaboration.

CLASS-SIZE INCREASES
Excellent teachers teach larger classes, by choice and within limits, in some cases shifting students from other teachers’ classrooms.
BOUNDLESS REACH

In the school models described here, teachers extend their reach to more students while remaining accountable for individual students’ learning. Teachers may also take on roles in which thousands or even millions of students benefit. For example, teachers can:

• create video lessons
• help design learning software
• develop curricula and assessments

If these activities generate revenue, they can provide another way for excellent teachers to earn more by reaching larger numbers of students. But teachers in these roles do not interact directly with students and are not accountable for outcomes of individual students using their tools. So students still need an excellent teacher who teaches live and is fully accountable for learning in each subject.

most consistently excellent in a particular subject or role, and with the support each teacher needs—may find that improved student outcomes lead to increased public support for additional school funding. Initial Opportunity Culture sites have experienced significant increases in the number of teacher applicants, even in high-poverty schools.

HOW REACH MODELS CAN GENERATE SAVINGS FOR HIGHER PAY AND OTHER PRIORITIES

Each model produces potential savings while requiring costs that only partially reduce those savings. In practice, the net savings available to pay teachers more and fund other priorities will differ by school model, local wage differentials between teachers and other school staff, and the specific staffing and technology decisions that school design teams make. In some models, some potential savings and costs are optional, while others are inherent in the model. The detailed model descriptions explain the options for each model.

In addition to choosing school models, design teams of teachers and leaders will have to make choices about the speed of transition, based on the urgency of student learning needs, school values, and financial realities. Faster implementation in an existing school can free funds more quickly, but may increase transitional costs, described below.

Summary of Savings and Costs When Extending Excellent Teachers’ Reach

The ways that various reach models produce financial savings or increase funding include:

✱ Shifting non-classroom instructional specialists back into classrooms, when not needed to achieve excellent outcomes
✱ Reducing the number of teachers needed to reach the same number of students by adding paraprofessional support for noninstructional and routine instructional duties.
✱ Swapping teacher time with digital instruction or paraprofessional-supervised “homework at school” in age-appropriate quantities for students.
✱ Paying less for teacher roles with lighter workloads—fewer students, less responsibility, or shorter hours, such as 40-hour weeks—than for teaching positions that typically require workweeks over 50 hours
✱ Reducing construction costs in new schools by having fewer, larger rooms for digital labs or combined digital/face-to-face classrooms
✱ Increasing class sizes (by choice and within reason)

Costs may be incurred by:

✱ Adding paraprofessional roles to support reach, such as digital lab monitors, assistant teachers, learning coaches, and tutors
✱ Purchasing technology—digital-learning software, hardware, and Internet connections; webcams and online whiteboards for remotely located teaching; and time-saving technology tools
✱ Making facilities and furniture changes in existing schools
✱ Transitioning pay discrepancies—tenured and contract-protected teachers who do not either continue as full classroom teachers or take reach-extended roles may need to be paid above the value of their new positions. A slower transition to reach models through natural attrition can avoid this cost.
✱ Obtaining design assistance to choose and tailor reach models

More Detail

Here we provide more detail about each of these methods of saving funds while reaching more students with excellent teaching, and the costs that partially offset these savings.

The basic ways schools can generate additional funds or savings include:

✱ Shifting non-classroom instructional specialists back into classrooms. When excellent teachers and their teams reach more students successfully, fewer students may need specialists who supplement in-class differentiation. In schools where

1. We assume in all models that specialists for special education and English as a second language remain in schools.
A Teacher’s Impact = Student Outcomes x Number of Students Reached

specialists are chosen for their teaching prowess, those specialists could return to direct responsibility for students in new roles that allow career advancement and higher pay. This saves funds by avoiding an additional hire when an excellent teacher working outside the classroom as a specialist is already available in the school and can move into a direct teaching role.

Note: In some districts, these non-classroom positions may be paid for out of the district budget rather than school-level budgets. The district should work with schools designing Opportunity Culture models to allow them to reallocate those positions.

-reducing the number of teachers needed to reach the same number of students by adding paraprofessional support for noninstructional and routine instructional duties. When teachers reach more students, fewer teachers are needed overall, reducing total costs and permitting remaining teachers to earn more, even without class-size increases. (This does not require dismissals; natural attrition is high enough in most places to make this transition within a few years without extra dismissals.)

-swapping face-to-face teacher instruction with digital instruction or “homework at school” in age-appropriate quantities for students. Teachers may replace approximately 20 percent to 50 percent of face-to-face instructional time with digital instruction or offline skill practice and project work supervised by paraprofessionals, depending on student ages, other student needs, and the quality of available digital instruction. As noted below, this saves money because the paraprofessionals who supervise this time have lower wage rates than teachers. For example: Students at the elementary and secondary levels can spend as little as one or two hours, respectively, learning digitally, and greatly increase their odds of having great teachers in all four core subjects. This allows excellent elementary math/science teachers to teach three or four classes of students, and the best secondary math and science teachers to teach 50 percent more students—for more pay, without increasing class sizes, and gaining several hours of planning and team collaboration time weekly. Two notes may be helpful: First, “digital lab time” need not all be spent in front of a computer screen. Labs may also have space and tables for small-group tutoring and student skill practice and project work. Second, higher amounts of digital learning time allow more teachers to reach more students, but should be limited to levels that produce excellent learning outcomes and allow development of the whole child.

-paying less for teaching roles with lighter workloads (shorter hours, less responsibility, or fewer students). Some models allow some teachers to have fewer students (Class-Size Shifting) or shorter hours than people in lead teaching positions (which today typically require workweeks over 50 hours’). For example, Multi-Classroom Leadership allows some team teachers to focus on work that may be done in a shorter workweek, such as teaching small groups of students, grading, and providing feedback to students. These roles can preserve funds to pay other team teachers more, and also allow teachers who need shorter hours for personal reasons to continue teaching. A portion of schools within a district may use a teacher-leader-plus-novice design as a training ground for teachers who then feed into other schools.

-reducing construction costs in new schools by having fewer, larger rooms for digital labs or combined digital/face-to-face classrooms. This savings is realized most prominently in Time-Technology Swaps.

-increasing class sizes, by choice and within reason. Schools, or their districts or charter organizations, typically receive some portion of funding on a per-pupil basis. When some or all of a school’s teachers teach larger classes, requiring fewer teachers overall, funds are freed for higher pay and other priorities. With a simple Class-Size Increase model, schools can increase the class sizes of select teachers, perhaps recruiting and developing more teachers over time who are committed to this model. Alternatively, some teachers can take smaller classes with commensurately lower pay. If school funding is need-based—meaning students who require more time and resources are funded at a higher level—teachers also may be rewarded for teaching students who require more time, balancing reach with the challenges of teaching different student populations. Note: Some models, such as Time-Technology Swaps, actually allow increased student reach with smaller class sizes, if desired. In addition, most pilot schools have chosen team-based models rather than simple class-size changes.

Costs that may offset savings include:

-adding paraprofessional roles to support reach. These positions include digital lab monitors, assistant teachers, tutors, and learning coaches. People in these crucial jobs save excellent teachers enough time that the teachers can reach more students. They can play critical roles, such as supervising students during digital lab time, taking care of elementary stu-
students during unstructured time and transitions, taking care of
tudents on-site when subject teachers are remotely located,
or completing administrative tasks and paperwork. Because
people in these roles do not need the high levels of combined
academic, planning, and classroom management skills that
full teachers need, these positions pay less. But they also have
shorter workweeks of about 40 hours (in contrast, traditional
teachers report working over 50 hours weekly on average).3

* Purchasing technology. Digital-learning software, hardware,
and Internet connections all cost money, although a growing
range of free online resources is available. Remotely located
teachers need webcams and online whiteboards, and their
students need computers or large screens in classrooms.
Time-saving technology tools, such as student-learning data
analysis and grouping tools, course planning software, and
class communication websites, can reduce teacher time spent
on noninstructional tasks, making extended reach more feasible
in any school model. Most of these must be purchased.

* Making facilities and furniture changes in existing schools.
Schools may find that classrooms need to be altered to incor-
porate digital labs in existing school buildings, requiring the
removal of walls and installation of electrical, cable, and wire-
less connection gear. Some schools may need new furniture
as well, such as computer- and project-friendly tables.

* Transitioning pay discrepancies. Schools may choose to trans-
sition to reach models as natural attrition occurs. But others
may choose to make faster transitions in which current teach-
ers change roles. Tenured and contract-protected teachers
who do not either continue as full classroom teachers or take
reach-extended roles may need to be paid above the going
rate of their new positions. Although this cost is transitional
and temporary, it may be the most significant cost of reach
extension for some schools. When financially viable, with
public or private philanthropic funding, bearing this cost will
make reach fairer and more palatable to those who entered
the profession with different expectations. A slower transi-
tion to reach models within each school can avoid this cost,
allowing solid teachers who choose to stay in traditional roles
to continue doing their good work, but may reduce the ben-
efit to current students.

* Obtaining design assistance. Some schools and districts may
need design and facilitation assistance to choose and tailor
reach models. This temporary cost may be funded by allocat-
ing reach-model savings over a number of years or by obtain-
ing special, temporary grants. See http://opportunityculture.
dot reach/ for links to detailed school models and imple-
mentation tools that may help reduce or eliminate this cost in
some locations.

Finally, benefits costs may increase or decrease the savings—
and teacher pay boosts—both in absolute terms and as a per-
centage of wages and salaries. We do not present benefit effects
here, as the permutations in different schools are too numerous
for this summary. School and district financial officers will need to
be mindful of benefits when calculating and reallocating the sav-
ings. Reallocating savings to pay increases and to new spending
on other priorities may have different effects on benefits costs.
For example: Paraprofessional benefits during employment may
be a higher percentage of wages than benefits for professionals,
reducing savings somewhat. Alternatively, reducing the number
of positions, such as non-classroom specialist reductions when
reaching more students with highly effective classroom teachers,
will in most cases further add to savings—increasing funds to pay
classroom teachers more.

In all the reach models, net savings are possible. How to spend
the savings is a question for excellent teachers and school and dis-
trict leaders.

HOW SCHOOLS CAN USE SAVINGS—INCLUDING PAYING TEACHERS MORE

All of the reach models free funds, and many can free teachers’
time, too. School design teams composed of teachers and school-
wide or district-wide leaders must choose how to reinvest that
money and time.

In addition to paying great teachers more for their expanded
impact, freed time and funds can be used for nearly any school
priority that requires time and money. In some cases, especially by
combining reach models, schools can pay all teachers more within
budget.

Schools and districts could also:

* Increase leadership by funding excellent teachers’ time:
 • To develop, lead, train, and evaluate other teachers and staff
 • To develop rubrics and routines that allow developing

In an Opportunity Culture, all teachers have career
opportunities dependent upon their excellence,
leadership, and student impact. Advancement
allows more pay and greater reach.
teachers and staff to take on more of the excellent teachers’ duties while maintaining excellent student outcomes for all students
• To help school leaders determine the best career paths for developing teachers

★ Increase development and collaboration of all teachers by funding time:
• To collaborate with teammates in the models built around teams—specialization, time-technology swaps, multi-classroom leadership, and remote teaching
• To develop skills needed for excellence in every role and for career advancement

★ Increase learning personalization and enrichment by funding time and talent:
• To add instructional time to students’ days or school year
• To reduce instructional group sizes
• To provide more small-group and individual instruction, by teachers or tutors
• To spend more time on enriched instruction and higher-order thinking skills
• To increase the planning time needed to handle a greater student load

The benefits of reach extension to teachers are not all financial. Some models allow schools to increase job flexibility and provide part-time work, which may retain excellent, experienced teachers who would otherwise exit the profession during various stages of their careers. (See more on OpportunityCulture.org at http://opportunityculture.org/teachers-time/.)

Using models of reach extension, schools can make all of these changes without taking excellent teachers out of instructional roles. When schools implement the models schoolwide, savings are higher and all teachers who extend their reach, not just excellent ones, can earn more. When excellent teachers lead teams and are responsible for team outcomes and peer development, these teaching teams can reach all students with excellent instructional tactics and tools.

For many teachers, the chances to pursue teaching excellence, impact more students, and help peers succeed are the best benefits of an Opportunity Culture.

Visit OpportunityCulture.org for more details on reach models and their implications for teacher pay and school budgets.

OTHER RESOURCES
Additional resources for reallocating spending to support better student learning include the following:

Education Resource Strategies (ERS) is a nonprofit organization dedicated to helping urban school systems organize talent, time, and money to create great schools at scale. Learn more about how to reallocate resources to support strategic school designs that extend teacher reach on their website: http://www.erstrategies.org/strategies/school_design.

The Center on Reinventing Public Education has published numerous reports about public school spending and has a web page devoted to finance, spending, and productivity: http://www.crpe.org/finance-and-productivity.

Notes
2. Schools may be able to staff some tutor positions with screened volunteers who have the required content knowledge.
3. Costs added by digital lab monitors will depend on the adult-to-student ratios in digital labs. Digital labs may have more students per adult than classrooms. Students typically would be engaged in individualized digital instruction or project work. One high-value use of adult volunteer time is helping with student questions and supervision in digital labs.

OPPORTUNITY CULTURE PRINCIPLES
Teams of teachers and school leaders must choose and tailor models to:
1. Reach more students with excellent teachers and their teams
2. Pay teachers more for extending their reach
3. Fund pay within regular budgets
4. Provide protected in-school time and clarity about how to use it for planning, collaboration, and development
5. Match authority and accountability to each person’s responsibilities
Savings and Costs of Reaching More Students With Excellent Teachers

<table>
<thead>
<tr>
<th>Ways to Extend Reach</th>
<th>Elementary Subject Specialization</th>
<th>Multi-Classroom Leadership</th>
<th>Time-Technology Swaps</th>
<th>Remote Teaching with Time-Tech Swap</th>
<th>Class-Size Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNDING/SAVINGS FROM REACH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reach more students to free per-pupil funds</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Swap teacher time for digital time</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Pay less for lighter-workload teaching roles</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Increase some class sizes (by choice, within reason)</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Shift specialists into classrooms</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Reduce new construction costs</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COSTS OF REACH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add support paraprofessionals</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>*</td>
</tr>
<tr>
<td>Purchase technology</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Make facilities/furniture changes</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Transitioning pay discrepancies**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Class-size changes do not require any additional costs. Schools, however, could choose to support teachers who take on particularly large classes by providing additional paraprofessional support.

**This cost depends on a school’s speed and method of transition, not the reach model.

Potential Pay Increase Percentages Available to Excellent Teachers in Three Elementary-Level Reach-Extension Models

<table>
<thead>
<tr>
<th>Ways to Extend Reach</th>
<th>Elementary Subject Specialization</th>
<th>Multi-Classroom Leadership</th>
<th>Time-Technology Swap—Rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classroom Specialist Can Earn:</td>
<td>Teacher-Leader Can Earn:</td>
<td>Blended-Learning Teacher Can Earn:</td>
<td></td>
</tr>
<tr>
<td>With Low Starting Percentage of Non-Classroom Specialists</td>
<td>22%–31% More</td>
<td>67%–97% More</td>
<td>23%–27% More</td>
</tr>
<tr>
<td>With High Starting Percentage of Non-Classroom Specialists</td>
<td>33%–43% More</td>
<td>104%–134% More</td>
<td>36%–41% More</td>
</tr>
<tr>
<td>When Also Paying Team Teachers up to 25% More</td>
<td>N/A</td>
<td>Up to 79% More</td>
<td>N/A</td>
</tr>
<tr>
<td>When Also Paying Team Teachers up to 10% More</td>
<td>N/A</td>
<td>Up to 109% More</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note 1. Figures expressed as “percentage more than average pay.” Schools save more when starting with higher percentages of non-classroom specialists, because savings are higher per class as these teachers’ positions are shifted back into classroom roles.

Note 2. Some portion of savings may be reallocated to all teaching staff or other priorities, not just excellent teachers. We present two example figures in the Multi-Classroom Leadership column when paying team teachers 10% and 25% more than average, which are modeled in the companion brief listed below.

Potential Pay Increase Percentages Available to Excellent Teachers in Two Secondary-Level Reach-Extension Models

Ways to Extend Reach → in a Large Secondary School

<table>
<thead>
<tr>
<th>Time-Technology Swap</th>
<th>Time-Technology Swap + Multi-Classroom Leadership</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blended Learning Teacher Can Earn:</td>
<td>Teacher-Leader Can Earn:</td>
</tr>
<tr>
<td>Teaching 22 or 23 periods a week, freeing 7 or 8 additional planning periods</td>
<td>Up to 26% more</td>
</tr>
<tr>
<td>Blended-learning team teacher: Teaching 25 periods per week, freeing 5 additional planning periods</td>
<td>Up to 22% more</td>
</tr>
<tr>
<td>Multi-Classroom Leader: Teaching 15 periods per week, freeing 15 additional leadership/planning periods</td>
<td></td>
</tr>
</tbody>
</table>

Ways to Extend Reach → in an Average-Size Secondary School

<table>
<thead>
<tr>
<th>Time-Technology Swap</th>
<th>Time-Technology Swap + Multi-Classroom Leadership</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blended Learning Teacher Can Earn:</td>
<td>Teacher-Leader Can Earn:</td>
</tr>
<tr>
<td>Teaching 16 or 19 periods per week, freeing 4 to 9 additional planning periods</td>
<td>Up to 24% more</td>
</tr>
<tr>
<td>Blended-learning team teacher: Teaching 19 or 21 periods per week, freeing 4 to 6 additional planning periods</td>
<td>Up to 20% more</td>
</tr>
<tr>
<td>Multi-Classroom Leader: Teaching 15 periods per week, freeing 10 additional leadership/planning periods</td>
<td></td>
</tr>
</tbody>
</table>

Note 1. These assume a reduction in 2 to 4 non-classroom specialists, depending on the scenario.

Note 2. Some portion of savings may be reallocated to all teaching staff or other priorities, not just teachers who extend their reach.

Note 3. The number of class periods teachers teach affects both the pay increases and number of new free periods that reach models provide to teachers. See *Financial Planning for Secondary-Level Time-Technology Swap + Multi-Classroom Leadership* for detailed calculations and multiple scenarios of net savings and pay increase potential, including data sources, at http://opportunityculture.org/reach/pay-teachers-more.
In-Person
The teacher accountable for learning is in the school, teaching face to face, and may lead others.

Remote
The teacher accountable for learning uses technology to teach and connect with students, and may lead others. An in-person monitor is required.

MULTI-CLASSROOM LEADERSHIP

| School-based or remote instructional teams report to an excellent teacher. | Multi-Classroom Leadership (In-Person Pods) | Multi-Teacher Leadership (Remote Pods) |

SPECIALIZATION

| Excellent teachers specialize in high-priority subjects and roles. | Subject Specialization | Role Specialization |

CLASS-SIZE CHANGES

| Excellent teachers teach larger classes, within limits and by choice. | Class-Size Increases | Class-Size Shifting |

TIME-TECHNOLOGY SWAPS

<table>
<thead>
<tr>
<th>Digital instruction replaces enough top-teacher time that they can teach more students. Students have digital instruction for 25% or more of learning time.</th>
<th>In-Person Swaps</th>
<th>Remote Swaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotation</td>
<td>Alternating digital instruction and in-person teacher on a fixed schedule</td>
<td>Rotation</td>
</tr>
<tr>
<td>Flex</td>
<td>Digital, small-group, and large-group learning time individualized</td>
<td>Flex</td>
</tr>
</tbody>
</table>

LIKELY COMBINATIONS

- Any of the models combined with Homework Flipping, Specialization or Multi-Classroom Leadership
- Schools committed to reaching every student in every valued subject with the excellent teachers will use Multi-Combinations

Note: Shaded items may require new technology. Students are in school buildings in all models in this table.

*The terms Rotation and Flex are widely used to describe “blended learning” models. See Innosight Institute’s *The Rise of K-12 Blended Learning.*

Acknowledgements

This publication was made possible in part by support from the Bill & Melinda Gates Foundation. The school models on which this brief is based were also made possible in part by support from Carnegie Corporation of New York. The statements made and views expressed are solely the responsibility of Public Impact. Learn more at OpportunityCulture.org.

Public Impact encourages the sharing and copying of these materials. Users must include "©2012 Public Impact" and "OpportunityCulture.org" on all pages where material from these documents appears. Opportunity Culture is a trademark of Public Impact.

©2012, updated 2014 Public Impact, Chapel Hill, NC.